Energía

Las Historias Detalladas en Inglés

  1. China - Biogas - Millions of rural households in China have switched to homemade biogas for cooking, with far-reaching environmental and social benefits.

Las cápsulas (lista)

  1. Zimbabwe - Micro-hidroeléctricas - Las plantas micro-hidroeléctricas proporcionan energía de bajo impacto a aldeas rurales.
  2. EUA - Colorado (Boulder) - Namaste Solar Electric - Una empresa de celdas fotovoltaicas ofrece energía renovable y un modelo de negocios con conciencia social.
  3. EUA - Hawai (Oahu) - La Iniciativa de Saunders Sustentable - Estudiantes universitarios lideran el esfuerzo para hacer más sustentable la Universidad de Hawai.
  4. Alemania – Feldheim – Comunidad con Independencia de Energía. Una comunidad se hace independiente mediante energía eólica, solar y biogás.
  5. Vanuatu - Aceite de Coco como Combustible Alterno - Mientras cae el precio de la copra y sube el del petróleo, el aceite de coco es un prometedor combustible "biodiesel".
  6. Cuba - Energía Solar Rural - La energía solar trae numerosos beneficios a zonas rurales.
  7. México - Michoacán - La Estufa Patsari - El Grupo Interdisciplinario de Tecnología Rural Apropiada diseñó y difundió una estufa de leña con polución mínimo.
  8. Perú - Plantas Micro-Hidroeléctricas - Comunidades aisladas en el costado oriental de los Andes logran electrificación mediante pequeñas plantas hidroeléctricas ubicadas en ríos y arroyos.
  9. República Dominicana - Electrificación Rural a base de Energía Solar - Micro-empresas para la instalación de paneles solares se originan en Republica Dominicana y se extienden através de Latinoamérica y otras partes del mundo.

Zimbabwe - Micro-Hidroeléctricas

por Amanda Suutari

En África, el alto costo de extender la red eléctrica a zonas rurales resulta aldeas no-electrificadas donde se utilizan fuentes energéticas costosas, contaminantes y de baja calidad, por ejemplo las baterías, lámparas de keroseno para iluminación, y leña y olotes para la cocina.

En 1992, Zimbabwe fue azotada por una devastadora sequía lo cual motivó a las zonas rurales a mejorar su seguridad hídrica. En los altos orientales, en la frontera con Mozambique, donde habita la etnia Shona, los residentes a lo largo del Rio Nyamarimbira desde hace tiempo buscaban respuesta a sus problemas de abasto de agua y electricidad. Tan solo el 15% está conectado a la red eléctrica. La región normalmente recibe buenas lluvias, por lo que los arroyos fluyen durante todo el año, aún en la temporada de secas. Pero para obtener agua frecuentemente los niños caminan largos trechos sobre terreno difícil. Los maestros informaron que los niños pasaban más horas buscando agua que estudiando. Las micro-hidroeléctricas (MHE) fueron vistas como una opción para integrar las soluciones a los problemas de carencia de agua y electricidad.

Un exitoso proyecto MHE cercano a la comunidad de Tangwena les inspriró a instalar su propio sistema similar. Buscaron apoyo y asesoría de Intermediete Technology Development Group (ITDG), una ONG Inglesa que promueve tecnologías apropiadas para el desarrollo. ITDG comenzó con talleres y ofreció asesoría técnica, pero se acordó que el proyecto debía ser administrado a nivel local, por un comité electo.

Las MHE utilizan una pequeña represa para canalizar agua de un rio o arroyo hacia un tanque, y de ahí a la terminal eléctrica. El flujo del agua es dirigido hacia una turbina, que es activada por el chorro de agua para generar electricidad. La electricidad es transmitida de dos maneras: ya sea con una mini-red de cables que conectan casas, o con baterías que son recargadas en la terminal. El agua que sale del otro lado puede ser utilizada para el hogar o para regar cultivos.

El proyecto fue completado en el 2002, cuando Zimbabwe sufría de escasez de combustibles,  de disturbios sociales y políticos, e inflación. Entre los resultados:

  • 300 casas y 500 estudiantes y maestros de la escuela primaria Tsatse tienen mejor acceso a electricidad.
  • Como parte del proyecto se construyó un molino para moler maíz, incrementando la seguridad alimentaria.
  • La electrificación de la escuela no solo beneficia a estudiantes, sino a los maestros, pues antes era difícil mantenerlos. Ahora los maestros reportan mayor satisfacción laboral y no renuncian tanto.
  • La purificación del agua ha reducido las infecciones transmitidas por el agua.
  • Ya no hace falta viajar en busca de agua.
  • Se irrigaron 30 hectáreas de cultivos, lo cual ha incrementado los rendimientos e ingresos agrícolas, así como la seguridad alimentaria, pues se cultiva todo el año.
  • Mientras que los hombres dominaron el proceso de planificación, las mujeres aportaron el 70% de la mano de obra. Esto no tiene solución sencilla, pero ITDG está haciendo un intento por brindar más oportunidades a mujeres. Actualmente hay una Directora, lo cual ha logrado mayor participación de mujeres en reuniones.
  • Los resultados han inspirado a las comunidades vecinas de Ngurunda y Magadzire a buscar apoyo de ITDG para proyectos similares.

Servicios y beneficios: energía sustentable, autosuficiencia, oportunidades educativas, seguridad alimentaria e hídrica, relaciones sociales, igualdad de género, control de enfermedades.

Volver al inicio

EUA - Colorado (Boulder) - Namaste Solar Electric

by Regina Gregory

Civil engineer Blake Jones once worked for Brown and Root (a subsidiary of Halliburton) in the Middle East oil and gas industry. But he had a "gradual awakening to wanting passionately to work with renewable energy because I thought there was a better way." He moved on to Nepal to install solar and hydroelectric systems in remote areas.

In 2004, Amendment 37 was approved by Colorado voters, requiring the state's biggest utilities to get 10% of their power from renewable resources by 2015 (including 4% from solar power). "It hit me," said Jones, "the biggest impact I can make is back home in Colorado, where we have fantastic solar resources. The U.S. is the largest consumer of energy and we need to recapture our leadership in the world for setting a positive example."

In 2005, Jones joined with friends Wes Kennedy and Ray Tuomey to start up Namaste (which means "greeting of great respect, celebrating the interdependence of all living beings") Solar Electric. It is the very model of a righteous business, both ecologically and socially. The company's website states "We measure 'profit' and 'success' in a holistic way that includes not just traditional economic metrics (i.e. earnings and growth) but also the effects on our natural environment, work environment and local/global communities." Some interesting features include the following:

  • The company is employee-owned, and all major decisions are made by consensus. Every employee has equal pay, and gets six weeks paid time off per year.
  • Whenever possible, business trips (even deliveries of solar equipment) are conducted by bicycle. The company van runs on biodiesel, and the company car is a Prius. What little carbon they generate is offset with the purchase of carbon credits.
  • The new office building is 100% wind and solar powered and has a xeriscaped garden. It is built of recycled building materials. All the office furniture and carpet is secondhand, and they use carpet tiles so that only the worn out pieces need to be replaced. Kitchen waste is composted and nearly everything else is recycled, with a goal of zero waste.
  • The company donates 1% of its annual revenue to non-profit organizations, in the form of grants which are not money, but solar systems. It's the gift that keeps on giving, they say. Beneficiaries have included schools, homeless shelters, environmental organizations, and a local radio station.
  • Namaste partners with public schools, universities, and non-profits such as Solar Energy International to conduct workshops, classes, and internships.
  • It also is active in promoting more solar-friendly laws at the Colorado legislature and Public Utilities Commission.

Namaste's unique business model has made it the subject of many case studies by MBA students. The company can show impressive results: Namaste has installed over 350 photovoltaic systems in the Denver-Boulder area, including prominent projects such as the Governor's mansion. The number of employees has grown from 3 to 45. Triple-digit growth (i.e., at least doubling each year) is the norm.

Business really took off in 2006, when the local utility, Xcel, announced its rebate program. By the end of 2007, the utility had paid out $19.5 million to more than 1,000 customers for more than 4.3 megawatts of power. State sales tax rebates and federal tax credits also help to offset the average $12,000 cost of a photovoltaic system. According to satisfied customer Hal Stuber, "for every $3 of cost, from rebates and tax credits I'm getting $2 back." A further incentive is net metering (or Grid-Tie), where his electric meter actually runs backward, feeding power into the grid, when his system produces more than is being consumed.

The future of solar energy in Colorado became even brighter in 2007, when Governor Bill Ritter - a strong proponent of a "New Energy Economy" - signed a law that set a goal of 20% renewables by 2020.

For more information see the Namaste Solar Electric website.

Este sitio web contiene materia traducida del sitio web www.ecotippingpoints.org.
Traducción: David Nuñez. Redacción: Gerry Marten

Volver al inicio

EUA - Hawai (Oahu) - La Iniciativa de Saunders Sustentable

by Regina Gregory

The University of Hawai'i at Manoa (UHM) campus is the second-largest consumer of electricity on the island of Oahu, second only to the military. Since over 75% of the island's electricity comes from burning oil, and the utility passes oil price increases directly on to the consumer, UHM's electric bill kept going up - -despite efforts at energy conservation and an actual reduction in kilowatt-hours used. The bills amounted to over $15,000,000 in 2005, and were projected to rise to $21,300,000 million in 2007. In response to the "sticker shock" of rapidly rising electric bills and its impact on the University's budget, the UHM Chancellor's Office convened an Energy Summit on October 24, 2006. The Chancellor proposed a Clean Energy Policy with the ambitious goals of:

  • 30% reduction in campus energy use by 2012
  • 50% reduction in campus energy use by 2015
  • 25% of campus energy supplied by renewable sources by 2020
  • Energy and water self-sufficiency for the campus by 2050

The University and the electric company formed a partnership to work toward these goals. Saunders Hall, a seven-story building which houses the social science departments, was chosen as a pilot project to implement projects on a trial basis which could then be "rolled out" across the entire campus. Two electric meters were installed in the building to establish a baseline demand and measure the impact of any energy conservation projects.

The Public Policy Center on the 7th floor of Saunders launched the Sustainable Saunders Initiative in early 2007, and a student group called Help Us Bridge (HUB) was formed. In the spring of 2007 the Public Policy Center surveyed all the occupants of Saunders Hall regarding their energy use. (This also served as a behavior modification tool for encouraging people to turn off their computers at night and to take the stairs more often.) By fortunate coincidence, according to Sustainable Saunders student coordinator Shanah Trevenna, "90% of the building's energy was used for lighting and air conditioning while the top two complaints by residents were that the lights were too bright and the temperature too cold." Thus it was logical to begin with lighting and air conditioning projects.

There were many more fluorescent lights than were needed. Over 2,100 bulbs were removed, for an energy savings of 107,434 kilowatt-hours (kwh) per year. An additional 42,330 kwh/year are being saved due to the replacement of incandescent bulbs with fluorescent ones.

Forty-five percent of Saunders offices have individual air conditioners, but the rest are subject to a centralized system which, unfortunately, is permanently set to "CLO 1" - a temperature which may be appropriate for people in business suits, but not for Hawaiian students. Someday that system may be replaced, but in the meantime an air conditioning shutdown project has yielded great savings. Whereas the air conditioning was previously always on, now it is turned off from 9:00 p.m. to 5:00 a.m., 7 days a week. The resulting savings are estimated at 411,720 kwh per year. Research is being conducted on whether the shutdown hours could be expanded on weekends.

Together these simple no-cost projects have reduced Saunders Hall's electricity use by over 24%, which in 2008 prices translates into a savings of about $150,000 per year. HUB received a letter from the Chancellor's office asking if the group could perform similar energy audits and conservation measures on all the UHM buildings; the response was "not for free." It was proposed that part of the money saved could be devoted to paying the students to perform the audits. That did not happen, but in the 2009 state legislative session a bill was introduced to secure $207,000 per year in state funding for a sustainability internship program which would serve the same purpose, plus prepare students for similar jobs outside the university. With the encouragement of testimony from HUB members, the bill made its way through numerous committees in the state House and Senate. But it was not heard in the Finance Committee before the final deadline, and thus failed.

In addition to the energy conservation measures, five photovoltaic panels with microinverters on each have been installed on the Saunders rooftop, generating an estimated 1,400 kwh per year. Wind tests are currently being conducted, and eventually the Campus Facilities Office will move a donated vertical-axis windmill from the 7th floor lanai to the roof as a testing/education/demonstration project. It is thought the windmill might be able to generate 1 kw of electricity (or 8,760 kwh/year if constantly running).

But the Sustainable Saunders Initiative takes a much more holistic view of sustainability than just energy. At its official Interactive Launch Party on Earth Day (April 20) 2007, Saunders Hall's seven floors were divided into fifteen theme areas, with exhibits and experts on topics such as recycling, composting, bicycling, climate change, energy and water conservation, renewable energy, architectural design, sustainability education, food security, and organic agriculture. Each area was hung with graffiti paper so that the hundreds of students, faculty, staff, experts, and community members in attendance could jot down their own ideas. Results were presented to the State of Hawai'i Sustainability Task Force.

In February 2007 HUB began "dumpster diving" to retrieve recyclable materials and to analyze the waste stream. Now there are recycling bins on every floor of Saunders Hall for glass, aluminum and plastic. According to recycling coordinator Tamara Armstrong, this has resulted in a 70% reduction of bottles in the dumpsters. On the ground floor there are also 10 bins for paper and one for cardboard.

Sustainable Saunders also obtained donations of low-flow water fixtures and a waterless urinal, which were installed by the Campus Facilities Office on Saunders' 6th floor. One of the faucets even has a small turbine, so that water flowing down the drain generates enough electricity to power its sensor. Shanah Trevenna calculated that an expansion of the retrofit throughout the building could save enough water per year to fill over four Olympic-sized swimming pools, and would pay for itself in under 5 years.

The group also built picnic tables from recycled plastic lumber for the Saunders courtyard.

Three teams meet weekly: HUB itself, the Energy Team, and the Events team. I attended one meeting of HUB and found the room filled to capacity with very enthusiastic students. Three of them had gone to the "Power Shift" event in Washington, DC, sponsored by the Blue Planet Foundation. They reported on what they learned in the areas of policy, science, and organizing, as well as what other colleges across the country have been doing to promote sustainability. "We're kind of behind," said one. Other business included discussion of whether HUB should become an official chartered student organization instead of a registered independent organization.

The Energy Team hosted a workshop series on some very technical topics, with experts discussing various energy systems as well as financing and lease options. The Events Team was mainly busy with Sustainable Saunders' third annual Earth Day celebration. It was a big success, with 100 booths of eco-friendly products, services, information, and food, as well as a concert in the amphitheater. Events like this create a "big buzz" for motivating as well as educating the broader community, says Tamara Armstrong.

As for the idea of "rolling out" Saunders energy initiatives across the campus, some students from the Sea Grant College Program have taken up energy auditing, and the Facilities Management Office has become quite diligent in negotiating and implementing "energy scheduling initiatives" (i.e., air conditioning shutdowns) in addition to its regularly scheduled upgrades. As of October 2008, eight buildings had evening air conditioning shutdowns for an estimated savings of 1,900,000 kwh and $350,000 per year; five others were pending for 2,900,000 kwh and $536,000. Proposed weekend and holiday shutdowns in 48 buildings across the campus might amount to an additional annual savings of almost $4,000,000. The problem, according to mechanical engineer Blake Araki, is that the occupants who readily agree to air conditioning shutdowns are not in the biggest energy-using buildings. Many are concerned about mold or highly sensitive computers or scientific equipment; and some scientists who bring large research grants to the university feel they are entitled to 24-hour air conditioning.

The Sustainable Saunders idea also caught on at the East-West Center, a research institution across the street from the UHM campus. Sustainable EWC has implemented some of the same measures, as well as an organic garden.

Outside the university, HUB members with experience in energy auditing have been hired by the Coast Guard and an art museum, with several other prospects in sight. A recent newspaper article headlined "Hire a Student for Green Help" touts the Sustainable Saunders interns' past achievements and mentions that the "cost of a consultation ranges from $200 for a basic home assessment to about $2,000 for a commercial assessment."

Projects for the future (besides installing the windmill) include various 2009 Summer Session courses, workshops, and lectures on sustainability (including Sustainability 101 by Shanah Trevenna). For the fall, an exciting energy conservation competition is planned by the Public Policy Center among the seven floors of Saunders with the social sciences (anthropology, geography, economics, sociology, political science, etc.) keeping their eyes on newly installed meters on each floor. Also in the works is a program of mentoring K-12 schools to do their own energy audits.

What made Sustainable Saunders so successful is described in every article and interview as the enthusiasm, passion, energy, and commitment of the students. Often mentioned as well are the management and outreach/public relations skills of coordinator Shanah Trevenna. Interested students are immediately accepted and given real projects and opportunities to make a difference. In the words of Jennifer Milholen:

When I decided to move from Kauai to Honolulu I started doing general google searches of organizations in Honolulu that were doing wide-reaching work in sustainability. I knew that I wanted to get involved and have a tangible impact. Sustainable Saunders at UHM was a search result that came up over and over again, so I sent a simple email to Shannah who was the coordinator and was told that I was welcome at all of the meetings for all of the sustainability teams. Shannah immediately made me feel welcome and able. I was given tasks and objectives right off the bat. I started participating in projects for the events and energy teams that I could tell were necessary and timely. I helped "dumpster dive" for the campus eatery waste audit. The data from those dives will be used to justify the sole use of biodegradable containers and cutlery on campus eateries. I also was asked to do extensive research on the potential for industrial size composters and biodegraders on campus. For the first time I participated in the legislative process and testified in front of a Senate panel on the potential benefits of the Sustainable Saunders Internship Program Bill. That was an amazing experience. I was also able to help with the initial installation of solar panels on the roof of Saunders Hall. Currently, I have an active hand as the Volunteer Coordinator and Assistant Logistics Coordinator for UH Manoa's Sustainability Festival 2009. This has all taken place in a few short months. I went from having no experience in sustainability to having several wonderful ones. Being a part of the Sustainable Saunders group has played an integral part in my journey toward becoming an avid supporter and activist for a sustainable human society and culture. I plan to continue working with this group for as long as possible. Shannah leads an amazing group of motivated and creative students who I know will do incredible things for the UHM campus and Hawaii.

Este sitio web contiene materia traducida del sitio web www.ecotippingpoints.org.
Traducción: David Nuñez. Redacción: Gerry Marten

Volver al inicio

Germany - Feldheim – Energy Independent Community

by Regina Gregory

Energiequelle GmbH and the 145 residents of Feldheim, Germany were determined to make the community completely energy independent—from fossil fuels and from the energy company that kept increasing prices. It took about 5 years and 2 million euros, but in April 2010 they finally achieved this goal with a mix of renewable resources—wind, biogas, and solar—and their own heat and electricity networks.

Germany - Feldheim – Energy Independent Community

Wind

In 1998, Energiequelle co-founder Michael Raschemann built his first four 85-meter wind turbines at Feldheim. Today there are 43, with an installed capacity of 74.1 megawatts (MW = million watts). They produce an average of 170 million kilowatt-hours (kWh) per year.

Biogas

Feldheim's biogas plant was completed by the local farmers cooperative in 2008. Its input is 3,500 m3 of pig and cow manure, plus 6,775 tons of corn silage and crop residues. Its output is 11,250 m3 of fertilizer, 4 million kWh of electricity, and 4.3 million kWh of heat. At first, only the cooperative and a pig farm were using the heat, but since a heat network was completed in December 2009, the entire community benefits. 41 residences, the cooperative, 3 pig farms, and a factory are connected to the heat network. In times of extreme cold, a wood chip power plant springs into action to supplement the biogas. It is estimated this saves 160,000 liters of fuel oil every year.

Solar

Electricity also flows from Energiequelle's 40-hectare Solarpark Selterhof. It was built on a former military training area donated by the municipality of Treuenbrietzen. The city removed trees, and Energiequelle cleaned up unexploded ordnance to make way for 96 photovoltaic arrays. Each has a motorized tracking device, which Energiequelle now manufactures itself in its new factory (EQ-SYS) in Feldheim, using energy from its wind turbines. The capacity is now 750 kW, and average annual output is 1.125 million kWh of electricity. During 2010 more solar arrays will be added, and the solar park will have a capacity of 2.25 MW, with a commensurate tripling of the output.

According to Werner Frohwitter at Energiequelle, the community of Feldheim only uses about 250,000 kWh of electricity per year; the remainder is sold on the regional transmission grid.

The final step was to build a new electric grid to become completely independent from energy giant Eon. In fact, the community formed its own energy company, a sort of consumer cooperative called Feldheim Energie GmbH & Co. KG, in 2008. Its partners include all of the community's landowners--43 households, plus 2 businesses, the farmers cooperative, the municipality of Treuenbrietzen, EQ-SYS, and Energiequelle. Each customer paid 3,000 euros (approx. $4,000) for a connection to the heat and electric networks; two households chose the electric only for 1,500 euros. In return they are guaranteed that the price of energy will not rise for 20 years. In fact, it may decrease noticeably in 12 years, when the debts are all repaid.  That will be determined by the shareholders, each of whom has an equal vote. Currently the prices are 16.6 euro-cents per kWh for electricity (plus a flat service charge of 5.95 euros per month) and 7.5 euro-cents per kWh for heat (plus 29.95 euros per month). This is over 15% cheaper than what Eon charges, and the difference is expected to grow as conventional energy prices increase in the future.

Feldheim has attracted visitors from other parts of Germany and other European countries, and even places as far away as Chile, Japan, and Thailand. Such village-scale, multi-resource systems are especially appropriate for countries with large rural populations not linked to an electric grid. Next on the agenda is creation of an "energy competence center" in the vacant restaurant building, to promote the research and educational value of Feldheim's energy independence.

Back to top

Vanuatu - Aceite de Coco como Combustible Alterno

by Amanda Suutari

This is a pilot project initiated by a local entrepreneur, so this case demonstrates potential rather than results. Similar to the honge tree in India (see South Asia section) it's a variation on the theme of using biodiesel fuel from a local resource with various uses, with projected benefits to rural communities.

Vanuatu is a (relatively) low-income string of 83 islands in the South Pacific, some 1,300 km west of Fiji. 80% of its population is rural. Its main export commodity is coconut, harvested widely here (and in other tropical areas) for its copra (the dried flesh), while its oil is used in food products such as margarine as well as cosmetics, soaps, lotions, etc. The spread of cheaper soy and canola has displaced the coconut market, causing its prices, and therefore incomes in Vanuatu, to fall. Some coconut estates have closed down as a result.

A local entrepreneur named Tony Deamer has successfully developed a way to use coconut fuel in vehicles as an alternative to conventional fuel. Currently Vanuatu is a net importer, with some 9 million US dollars, or 10% of the value of its imports on fuel. Coconut oil could take pressure off the balance-of-payments deficit. Vanuatu is facing serious problems of underemployment and lack of opportunities especially in rural regions. Deamer is also promoting using the opportunities they offer not only for fuel but for other coconut-based products, such as:

  • fiber (known as coir) which can be used for mats, ropes, fabrics, brushes, biodegradable packaging (as alternatives to polystyrene), "green" alternatives to peat
  • the shells can be used for charcoal for fuel or for purifying water and other liquids (much in the same way Japanese "sumi" is/was used in many common household products)
  • oil is useful not only in cars but for cooking, and the residue from pressed oil can be used for animal feed

Like other biodiesels, coconut is cleaner than diesel and burns more slowly. When performance was monitored, the engines running on full or partial coconut oil showed less wear and tear on engines.

A major drawback is that the oil solidifies at 22 degrees celsius; while it is primarily aimed at the domestic market this is not the issue it would be in, say, Canada, but nevertheless temperatures do fall below 22 degrees in Vanuatu, therefore fuel lines need to be fitted with heat exchangers to warm up the fuel, or it must be mixed with conventional diesel. Deamer is currently developing a filtration process that would address this.

Deamer uses coconut oil in five of his own fleet of vehicles for his business, and about 200 minibuses in the city are using some proportion of mixed diesel/coconut fuel in their tanks. There is also experimentation being done on farm machinery.

Other regions of the world are looking to coconut fuel as a source of cheap local fuel, including the Philippines and Nigeria. This illustrates a versatile local resource which offers other products/services/opportunities than biodeisel, and that benefits rural dwellers who are currently off the grid or dependent on imports. But it is still not a very clean energy source, and its large-scale benefits have unresolved questions (such as growing coconut trees would compete with agricultural or forest land).

Potential services/benefits: poverty alleviation, economic opportunities, self-sufficiency, air quality, sense of place

For more information visit the Television Trust for the Environment.

Este sitio web contiene materia traducida del sitio web www.ecotippingpoints.org.
Traducción: David Nuñez. Redacción: Gerry Marten

Volver al inicio

Cuba - Energía Solar Rural

por Amanda Suutari

Esta historia carece de un “punto de inflexión” pero es un buen ejemplo de energía en comunidades rurales desatendidas por el servicio eléctrico, y de cómo la tecnología apropiada puede ofrecer un modelo alternativo de desarrollo.

Al igual que en otras zonas rurales, la expansión del servicio eléctrico a la Cuba rural frecuentemente es demasiado costoso. Las celdas fotovoltaicas también son caras porque están hechas de silicón y su manufactura requiere altos niveles de energía. Pero pueden ser importadas al mayoreo desde Alemania o España y ensambladas en Cuba.

La organización no-gubernamental Cubasolar ha ganado reconocimientos internacionales por sus esfuerzos de llevar la energía solar a zonas rurales. Su enfoque es de brindar soluciones a problemas sociales ofreciendo una fuente de energía, por lo que concentran sus labores en dos sectores: salud y educación.

Las Tumbas es una pequeña aldea cafetalera de cien habitantes, ubicada en el interior montañoso de Cuba, a unos 140 al oeste de La Habana. Antes de que tuviera electricidad, la gente se acostaba temprano, pero ahora pueden estudiar o realizar otras actividades en la oscuridad. Primero se electrificó la escuela y se introdujeron dos tecnologías: (1) una computadora cuyo potencial radica no solo en su acceso a internet, sino también en una variedad de herramientas didácticas tanto para estudiantes como maestros; y (2) una televisión, la cual tiene una función mas ambigua, pero permite mantener informada a la población y un canal Cubano está dedicado enteramente a la educación. Un equipo de video también permite observar documentales.

Todos los hogares tienen sus propios paneles, los cuales acumulan en baterías suficiente energía para 4 ó 5 horas de iluminación y para un pequeño radio. En la clínica ahora se pueden mantener refrigeradas vacunas y medicamentos importantes, para que las familias no tengan que viajar por ellos a la ciudad más cercana. También cuenta con un radio transmisor, que permite al doctor comunicarse con el hospital más cercano en casos de emergencia. Además, la clínica puede atender a pacientes de noche, recibiendo a aquellos que tienen que trabajar durante el día.

El éxito de este proyecto y de otros similares ha motivado al gobierno Cubano a invertir en energías renovables en otras partes del país igual de desatendidas por el servicio eléctrico nacional.

Beneficios/servicios: oportunidades educativas, acceso a información, mejor acceso a servicios médicos, mayor libertad y oportunidad debido a la electrificación de hogares.

Para mayores informes visite Television Trust for the Environment.

Este sitio web contiene materia traducida del sitio web www.ecotippingpoints.org.
Traducción: David Nuñez. Redacción: Gerry Marten

Volver al inicio

México - Michoacán - La Estufa Patsari

por David Nuñez

¿Puede una estufa de leña ser ecológica?

Acostumbrados como estamos a cocinar con gas o estufas eléctricas nos puede parecer increíble que cerca de la mitad de la población mundial aún depende de combustibles sólidos (leña, estiércol, carbón). El uso de leña no solo contribuye a la deforestación, sino que el fogón dentro del hogar también están relacionadas con infecciones respiratorias agudas en los niños y con enfermedades respiratorias crónicas (tuberculosis, cáncer) en los adultos. Estar expuestos al humo dentro del hogar también aumenta la probabilidad de otros males, como son infecciones del oído, cataratas y embarazos abortivos.  Este humo es responsable de millón y medio de muertes prematuras a nivel mundial cada año, desproporcionadamente entre mujeres y niños.

Dados todos los problemas ambientales y sanitarios asociados a la quema de leña, ¿como es posible que una estufa de leña sea ecológica? Reduciendo la cantidad de leña con respecto al fogón tradicional, disminuyendo la contaminación del aire dentro del hogar y mejorando la salud familiar. Todo ésto hace la estufa Patsari.

La Patsari se desarrolló en México, donde aproximadamente una cuarta parte de la población - cerca de 28 millones - aun depende de fogatas para la cocina. El Grupo Interdisciplinario de Tecnología Rural Apropiada, A.C. (GIRA), con sede en Michoacán, utilizó un enfoque participativo en que los usuarios Purhépecha aportaron al diseño sencillo pero efectivo de la estufa con que ahora están reemplazando al fogón tradicional éstas familias rurales.

Consiste de una caja de combustión cerrada que permite cortar en un 50% el uso de leña, y una chimenea para sacar el humo del hogar, lo cual permite una reducción del 70% en la contaminación aérea dentro del hogar. La superficie para cocinar consiste en cómales colocados sobre el fuego, en la parte superior de la caja de combustión.

A pesar de la promesa de mayor eficiencia y aire mas limpio, al inicio las familias se mostraron renuentes a cambiar la manera en que han cocinado durante miles de años. El punto de inflexión se dio de manera inesperada, cuando las mujeres notaron que las cocinas Patsari eran mucho más fácil de de mantener limpias. Se otorgaron microcréditos y descuentos para facilitar la adopción masiva de la Patsari, y para el 2006 más de 3,500 familias y 70 microempresas habían instalado sus estufas Patsari. 

Comprando las partes pre-fabricadas (como la chimenea) de proveedores locales, y capacitando a lugareños en la construcción y promoción de las estufas Patsari, el proyecto se vuelve auto-sustentable. Los gobiernos municipales y asociaciones civiles frecuentemente brindan los materiales de construcción, y así los clientes tan solo necesitan pagar al constructor. Se han capacitado a más de 100 constructores, que a su vez capacitan a las familias en la operación y mantenimiento de las estufas. Los constructores además realizan por lo menos tres visitas posteriores a la construcción para verificar su funcionamiento y corregir cualquier deficiencia.

Estudios han demostrado que en casas con estufa Patsari hay un 30% menos de enfermedades respiratorias y un 50% menos de infecciones de los ojos, creando un incentivo más para adoptarla. Los beneficios a la salud podrían ser aún mayores cuando casas vecinas también instalen su Patsari.

Por todos estos motivos, en el 2006 GIRA ganó el Premio Ashden de Energia Sustentable.

Perú - Plantas Micro-Hidroeléctricas

por David Nuñez

Aunque el costado oriental de los Andes ofrece algunos de los paisajes más espectaculares del Perú, también es una de las zonas de mayor subdesarrollo en el país. El difícil acceso a esta zona montañosa ha evitado su electrificación, y la pequeña y dispersa población es reducida al migrar los aldeanos en busca de mejores oportunidades en ciudades más desarrolladas del resto del país.

 Practical Action Peru (PAP), es el brazo Latinoamericano de una ONG del Reino Unido que data de 1966, y que desde 1985 ofrece a estas comunidades montañeses una fuente alterna de energía alimentada de los abundantes ríos y arroyos de la región. Trabajando a nivel local con los aldeanos, PAP ha instalado cerca de 50 plantas micro-hidroeléctricas que han beneficiado a más de 30,000 personas.

Estos sistemas requieren de un flujo controlado de agua que depende de una serie de canales y cámaras para redirigir parcialmente el flujo del río o arroyo hacia la turbina. Aunque la mayor parte de los componentes son fabricados por pequeñas empresas Peruanas (lo cual hace mas sustentable al proyecto y facilita su difusión), algunas de las piezas más avanzadas deben ser importadas. Además, deben considerarse los gastos operativos y de mantenimiento. En fin, se requiere de una inversión significativa.

Es por ello que PAP trabaja íntimamente con cada comunidad para determinar un plan de financiamiento y mantenimiento adecuado a cada instancia. En la mayoría de los casos, PAP dona el 60% del costo total, la comunidad invierte otro 15% en mano de obra, y el restante se obtiene en préstamos del Banco Inter-Americano de Desarrollo. En un 90% de los casos, los préstamos se pagan en 3 a 6 años.

La mayoría de estas comunidades son dueñas de sus sistemas micro-hidroeléctricos, y contratan a micro-empresas que se encargan de su operación y mantenimiento. Un grupo administrativo comunitario fija las tarifas eléctricas, se encarga de la cobranza, paga los gastos operativos y de mantenimiento a dicha micro-empresa, y paga el préstamo. El PAP capacita tanto al grupo administrativo como a la micro-empresa en todos los aspectos de su planta, y continúa apoyándoles en la resolución de cualquier problema mayor que pueda surgir.

Los beneficios económicos de la electrificación han sido asombrosos. El 60% de los aldeanos reportan mayores ingresos desde que tienen electricidad; y el 20% reporta que sus ingresos han aumentado en un 50% o más. Aproximadamente mil empresas han crecido o han sido fundadas gracias a la electricidad. Entre estas contamos restaurantes, panaderías, fabricantes de muebles, heladerías, soldadores y cafés de internet.

Además se ha revertido la disminución poblacional con el regreso de lugareños desde las ciudades. Varios poblados han duplicado su población. El 90% del crecimiento poblacional de uno de estos pueblos, se debe al retorno de ex-migrantes con sus negocios.

Las escuelas ahora tienen computadoras y copiadoras, y los estudiantes pueden estudiar por la tarde en sus casas gracias a la luz eléctrica. Más maestros optan por vivir en estas comunidades, y así aportarles más, ahora que pueden gozar de electricidad.

Las clínicas y laboratorios ya pueden refrigerar medicamentos, vacunas y muestras; esterilizar equipo y materiales; computarizar sus registros; y comunicarse por radio con otros centros de salud.

En el hogar, ya hay refrigeradores, licuadoras y televisores. Las lámparas de keroseno han sido remplazadas por focos, ahorrando a las familias hasta un 70% de sus costos energéticos, y mejorando la salud de mujeres y niños afectados por la quema de combustible.

El gobierno Peruano ahora reconoce que las plantas micro-hidroeléctricas son la mejor manera de modernizar esta parte del país y ha adoptado un plan para la instalación de 50 plantas más. Además, el PAP, en alianza con Ingenieros sin Fronteras, ofrece cursos y organiza conferencias para difundir estas tecnologías (y otras) en otros lugares del mundo. Programas similares se han implementado en Bolivia, Guatemala, Sri Lanka y Nepal.

Para mayores informes, visite la página de los premios Ashden.

Este sitio web contiene materia traducida del sitio web www.ecotippingpoints.org.
Traducción: David Nuñez. Redacción: Gerry Marten

Volver al inicio

República Dominicana - Electrificación Rural a base de Energía Solar

En 1984 el ingeniero Estadounidense Richard Hansen instaló páneles solares en la casa de un amigo en la República Dominicana, a cuya aldea no llegaba la electricidad. La familia Martínez le pagó el favor en mensualidades equivalentes al gasto que previamente hacía para baterías y keroseno, con que anteriormente iluminaban su hogar y operaban electrodomésticos. La instalación les brindó electricidad limpia, segura y confiable y sus vecinos pronto comenzaron a preguntar como podían obtener su propio sistema.

Notando que la mayoría de los programas de electrificación a base de donativos fracasaban debido a carencias de capacidad local, mantenimiento y sentido propietario sobre el proyecto, Hansen, a través de su ONG Enersol, desarrolló una estrategia de mercado para promover la electrificación a base de micro-empresas.

Su estrategia consiste en identificar a lugareños con potencial y capacitarlos como técnicos en sistemas fotovoltaicos. Al completar el curso, estos individuos reciben una certificación y regresan a sus pueblos realizando una instalación de paneles solares para algún vecino y así exhibir la tecnología. A los técnicos se les apoya en el desarrollo de su propia micro-empresa ofreciéndoles no solo asesoría tecnológica, sino en también áreas como mercadotecnia y contabilidad. Además se les invita a formar parte de una red de profesionistas de interés común.

Sus clientes obtienen préstamos para comprar la instalación de parte de ONGs locales, previamente establecidas y arraigadas en la comunidad, y el sistema mismo sirve de garantía. A su vez, estas ONGs obtienen créditos de bancos, utilizando subvenciones obtenidas por Enersol como garantía.

El proyecto fue tan exitoso que para 1990 más de mil sistemas habían sido instalados en casas, empresas, iglesias, escuelas y clínicas en República Dominicana. En 1992 Enersol expandió sus operaciones a Honduras, donde las mil instalaciones se lograron en tan solo tres años.

Para 1993 Hansen notó que podría ganarse dinero en este campo emergente, y fundó la empresa Soluz. Aunque Enersol continuó trabajando como asociación sin fin de lucro, facilitando la creación de micro-empresas de electrificación rural, Soluz evolucionó aún más la estrategia al eliminar la necesidad de créditos bancarios. Los clientes de Soluz rentan sus instalaciones, en vez de comprarlas. Pagan una cuota mensual que cubre los gastos de instalación y mantenimiento. Para mediados de los 1990s Hansen asesoraba proyectos similares alrededor del mundo, y en 1996 fundó Global Transitions Consulting, cuyos clientes incluyen el Banco Mundial y USAID.

Mientras tanto Enersol continuó creciendo sus operaciones. En 1995 lanzó AGUASOL, un proyecto que permite a comunidades adquirir sistemas de potabilización de agua a base de energía solar. Por lo menos 17 tales sistemas se han instalado. Y en el 2000 inauguró su programa EDUSOL, que ofrece sistemas de cómputo a base de energía solar a escuelas rurales – beneficiando a casi 30 escuelas. Otros proyectos incluyen la instalación de sistemas de comunicación, también de energía solar, para parques nacionales.

En todos sus esfuerzos Hansen y su equipo han insistido en alianzas con asociaciones y empresas locales, y se aseguran de involucrar a mujeres en cada etapa. Sin duda esto ha contribuido en gran parte a su notable éxito, y es el motivo por el cual su modelo se ha replicado desde Bolivia hasta la India. En reconocimiento de su labor Hansen y Soluz fueron reconocidos como Pioneros Tecnológicos en el Foro Económico Mundial del 2003.
Para mayores informes, consulte: globaltransition.net

Este sitio web contiene materia traducida del sitio web www.ecotippingpoints.org.
Traducción: David Nuñez. Redacción: Gerry Marten

Volver al inicio